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ABSTRACT

Stochastic differential equations play a prominent role in many application areas including finance, biology and 
epidemiology. By incorporating random elements to ordinary differential equation system, a system of stochastic 
differential equations (SDEs) arises. This leads to a more complex insight of the physical phenomena than their deterministic 
counterpart. However, most of the SDEs do not have an analytical solution where numerical method is the best way to 
resolve this problem. Recently, much work had been done in applying numerical methods for solving SDEs. A very general 
class of Stochastic Runge-Kutta, (SRK) had been studied and 2-stage SRK with order convergence of 1.0 and 4-stage SRK 
with order convergence of 1.5 were discussed. In this study, we compared the performance of Euler-Maruyama, 2-stage 
SRK and 4-stage SRK in approximating the strong solutions of stochastic logistic model which describe the cell growth 
of C. acetobutylicum P262. The MS-stability functions of these schemes were calculated and regions of MS-stability are 
given. We also perform the comparison for the performance of these methods based on their global errors. 
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ABSTRAK

Persamaan pembezaan stokastik memainkan peranan penting dalam kebanyakan bidang seperti kewangan, biologi dan 
epidemiologi. Dengan menggabungkan elemen rawak ke atas sistem persamaan pembezaan biasa, pesamaan pembezaan 
stokastik muncul. Ini membawa kepada fenomena fizikal yang lebih kompleks berbanding dengan persamaan deteministik 
yang setara dengannya. Walau bagaimanapun, persamaan pembezaan stokastik tidak mempunyai penyelesaian analitik 
dan kaedah penyelesaian berangka merupakan cara terbaik untuk mengatasi masalah ini. Pada abad ini, banyak usaha 
telah dilakukan untuk mencari penyelesaian hampiran persamaan pembezaan stokastik. Bentuk am kelas Stokastik 
Runge-Kutta, SRK telah dikaji dan secara khusunya SRK peringkat 2 dengan pangkat penumpuan 1.5 dan SRK peringkat 
4 dengan pangkat penumpuan 2.0 telah dibincangkan. Dalam kajian ini, kami melakukan perbandingan bagi melihat 
keberkesanan kaedah Euler-Maruyama, SRK peringkat 2 dan SRK peringkat 4 bagi mencari penyelesaian hampiran ke 
atas model logistik stokastik yang menerangkan kadar pertumbuhan sel C. acetobutylicum P262. Keberkesanan kaedah 
tersebut telah dibandingkan berdasarkan analisis stabiliti min kuasa dua dan ralat sejagat.

Kata kunci: Euler-Maruyama; persamaan pembezaan stokastik; stokastik Runge-Kutta peringkat 2; stokastik Runge-
Kutta peringkat 4

INTRODUCTION

Modelling of physical phenomena and biological system 
by using stochastic differential equations (SDEs) has 
become an intensive research area over last few decades. 
By incorporating random elements into the deterministic 
differential equation system, the system of stochastic 
differential equations arises. These models may offer a far 
more realistic representation of the physical system, instead 
of a deterministic model. However, most of the SDEs do 
not have an explicit solution. Hence, there is a need for the 
development of reliable and efficient numerical integrators 
for such problems. The first attempt in this direction had 
been discovered by Maruyama in the 1950s. This scheme 

is known as Euler-Maruyamawhich has a strong and weak 
order convergence of 0.5 and 1.0, respectively. The order 
convergence of Euler method is quite low, thus there is a 
need for higher order numerical schemes. 
	O ne possible approach is to use the truncated 
Taylor series expansions. However, this approach needs 
more partial derivatives when more stochastic integral 
terms are added. The method of derivative-free scheme 
was introduced to replace the derivatives in Taylor 
approximations by finite difference. Milstein scheme, a 
derivative-free method of order 1.0 had been proposed by 
Milstein (1974). For multi-dimensional driving Wiener 
processes and non-commutative case, the double stochastic 
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integral in the Milstein scheme needs to be computed. This 
leads to the method with derivatives and it is difficult to 
be implemented. 
	 An improvement to that, 2-stage and 4-stage stochastic 
Runge-Kutta, SRK was introduced by Burrage & Burrage 
(1996). They presented a very general class of explicit SRK 
with strong order convergence of 1.0 and 1.5. 
	I n this paper, we focus on the comparison towards the 
relative performance of Euler-Maruyama (EM), 2-stage 
SRK (SRK2) and 4-stage SRK (SRK4) in approximating the 
strong solution of stochastic power law logistic model used 
to describe the cell growth of C. acetobutylicum P262. 
The outline of this paper is; in the next section, we briefly 
introduce stochastic differential equations used to model 
the cell growth of C. acetobutylicum P262. Descriptions 
of three numerical schemes are given in the following 
section in addition to mean-square stability presented in 
last section. Then, MS stability regions for EM, SRK2 and 
SRK4 were presented followed by plotting of global errors 
against step size for three different schemes. Numerical 
examples were carried out to simulate the solution of the 
resulting system of SDEs by means of strong order methods 
of 0.5, 1.0 and 1.5. 
	T hen, the prediction quality of stochastic logistic 
model (SLM) and logistic model (LM) are presented.

STOCHASTIC LOGISTIC MODEL

The deterministic model used to explain cell growth of C. 
acetobutylicum P262 is given as:

	 	 (1)

where x is the cell concentration, μmax represents the growth 
coefficient and xmax correspond to the maximum value of 
the cell growth. Arifah (2004) introduced a white noise 
perturbation on the coefficient parameter  such that
								      

	 	 (2)

where  s is a diffusion coefficient and W(t) is 
one dimensional stochastic process having scalar Wiener 
process components with increment ΔW(t) = W(t+ Δt)  
which are independent Gaussian random variables N(0, 
Δt). Model (1) in Ito form is SLM which is given by

	 	 (3)

or in the integral form it can be expressed by

	 	 (4)

	T he second integral in (4) represents stochastic 
integral with respect to a Wiener process and it cannot be 
interpreted as Riemann-Stieltjes integral. There are two 
ways to represent the stochastic integrals namely Itoand 
Stratonovich integral depending on the evaluation points 
of the integrand. Though our model is in to form, it can be 
converted to Stratonovich form and vice-versa by means 
of the following formula

	 	 (5)

	 By employing (5) to drift coefficient in (3) we shall 
obtain stochastic logistic model (SLM) in Stratonovich 
form

(6)

	T he equations (3) and (6) under different rules of 
calculus have the same solution. In the case of additive 
noise, the Ito and Stratonovich representations are 
equivalent. In order to avoid any confusion in notation, the 
symbol ° will be used to denote the Stratonovich form (i.e. 
° dW(t)).Throughout this paper only Stratonovich SDE will 
be considered. Please note that Runge-Kutta type schemes 
should not be used for Ito SDEs as they are generally not 
consistent with Ito calculus.

NUMERICAL METHODS FOR SDEs

Three numerical schemes were adopted for solving SDE in 
(6) namely EM, SRK2 and SRK4. The simplest numerical 
method for solving SDE is EM which can be represented 
by the following formula
								      
	 yn+1 = yn + f (yn) Δt + g(yn) ΔWn	 (7)

where f is a drift coefficient, g is a diffusion coefficient

	 Δt = tn+1 – tn, ΔWn = W(tn+1) – W(tn).	  (8)

ΔWn be generated numerically by using pseudo-random 
number generator which involves sampling from 
independent, normal distributed random variables with 
mean zero and variance, Δt. The order convergence of 
EM method is quite low and so more efficient methods 
are needed. Rumelin (1982) presented a so-called s-stage 
explicit SRK for SDE which is based on the increment of 
Wiener process, ΔWn. A simple generalisation of SRK 
methods to SDEs is

	

							       (9)
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where A = (aij)s×s and B = (bij)s×s  are matrices of real elements 
while  αT = (α1, …, αs) and  γT = (γ1, …, γs) are row vectors 
∈ℜS. The stochastic component comes from J1 integral, 
where  Burrage and Burrage (1996) refined 
(9) by introducing other stochastic elements apart from J1. 
Arbitrary matrix Z and vector zT were introduced whose 
elements themselves are random variables. Hence, the 
general family of s-stage SRK is formulated as follows

	 	
(10)

Zij and zj can be written as a linear combination of p 
different random variables θ1,…,θp as follows

	 	 (11)

	 An explicit SRK with strong order of 1.0 and 1.5was 
developed by letting  p = 2. For p = 2 we have θ1 = J1 and 
θ2= where J1=   and J10=  The 
random variable J10 has the following representation	

	 	 (12)
 
where G1 and G2 are standard normal distribution. Ans-
stage SRK can be written as

		

    	
(13)

Burrage and Burrage scheme for 2-stage SRK has the 
following form

	 	
	 (14)

while 4-stage SRK with strong order of 1.5 can be written 
in tableaus form as follows

	 		   

	

	 	 (15)

	
	 γ(1)T = (–0.78007, 0.073637, 1.4865, 0.21992)
	 γ(2)T = (1.69395, 1.63610, –3.02400, –0.306049).

MEAN SQUARE-STABILITY ANALYSIS

Numerical stability analysis for SDEs is far more complex 
than ODEs. Consider a scalar test equation of Stratonovich 
form with complex number λ (ℜλ < 0) and μ,

	 dX(t) = λX(t)dt + μX(t)dW(t),   t ∈ [0, T]
	 X(0) = 1	 (16)

The exact solution of (16) is

	 	 (17)

Saito & Mitsui (1996) defined by

	  = E|Xn|
2	 (18)

When we apply numerical scheme to (16) and take the mean 
square norm, we obtain one-step difference equation of 

	 	 (19)

 is called stability function of the scheme and 
clearly  as n→∞ if and only if  We will 
calculate the stability function of three numerical schemes 
considered in this study and their respective regions of MS-
stability. Let and ,it can be easily derived 
that Euler Maruyama which is given by equation (7) have 
the stability function

	 	 (20)

The derivation of MS-stability function for SRK2 is given 
as below
	
	 X1 = Xn

	

	

	 	
(21)
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Substitute (16) into (21) we have

	 	 (22)

By squaring both sides of (22), we obtain

		  (23)

	 Note that E(J1) = E(J1
3) = 0, E(J1

2) = h, E(J1
4) = 3h2. 

By taking expectation of both sides of (24), we obtain

	

	T hus, the stability function for SRK2 is 

	

		  (24)

	 With the same approach, MS-stability function for SRK4 
can be calculated as

	 X1 = Xn

	 f (X1) = λXn,  g(X1)  = μXn
	
	 X2 = Xn + a21hf (X1)+ 

	 f (X2) = λX2, g(X2) = μX2
	
	 X3 = Xn + ha32 f (X2) 

	                + J1 

	 f (X3) = λX3, g(X3) = μX3	 (25)

	

		 f (X4) = λX4, g(X4) = μX4

	 Xn+1 = Xn + (α1f (X1) + α2f (X2) + α3f (X3) + α4 (X4))h

	          + (γ1
(1) (X1)+γ2

(1)g(X2)+γ3
(1)g(X3)+γ4

(1)g(X4))J1
	
                  +(γ1

(2)g(X1)+γ2
(2)g(X2)+γ3

(2)g(X3)+γ4
(2)g(X4))  	

	
(26)

	T he stability function of R4 is given by the following 
expression

(27)

NUMERICAL EXPERIMENT& DISCUSSION

The above analysis can be justified by a numerical 
example

	 dX(t) = (–100+100i)Xdt + 10XdW(t), t ∈ [0, T]
	
	 X(0) = 1.	 (28)

then,   and  In order to visualise the
 

domain of MS-stability, we plot the stability region for 

	F igure 1 represents the regions of absolute stability 

at  in versus plane for EM, SRK2 and SRK4 
schemes. We can observe that SRK4 is superior in 
stability compared to other schemes. Then, we compute 
the global errors at the right-end point T with M = 500 
different repeated simulations of sample paths. 
	T he global errors against step size are plotted on log-
log scale. The results were illustrated in Figure 2. It shows 
that the absolute error decreases as the step size decreases. 
It can be seen that SRK4 has lower global error, thus shows 

Figure 1. The region at  of absolute stability of 

EM,SRK2 and SRK4 schemes
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Figure 2. Strong convergence of EM, SRK2 and SRK4 methods to stochastic model (6)
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the better performance compared to SRK2 and EM. Then, 
we add for illustration a brief numerical example that will 
indicate the performance SRK4 in comparison to SRK2 and 
EM. Let us consider the population growth model taken 
from Oksendal (2003). Stratonovich interpretation of this 
model is given by:

	 dX(t) = rX(t)dt + αX(t)°dW(t), for t∈[0,T]. 	 (29)

The analytical solution of (29) is

	 X(t) = X(t0)exp(rt + αW(t)).	 (30)

	T o construct a numerical example, we choose r = 0.1, 
α = 0.005 and T = 1000. 
	 Numerical approximation for step size h = 0.1 and 
their respective analytical solution are given in Figure 3. 
This simple example visually demonstrates that higher 
order method can considerably improve the accuracy of 
the simulation.

MATHEMATICAL MODEL C. ACETOBUTYLICUM P262

We estimated the value of μmax and σ by using Levenberg 
Marquardt algorithm (Haliza et al. 2009). Thus, stochastic 
logistic model (SLM) for respective YE1, YE2 and YE3 are 
as below 

YE1: 	

(31)

YE2:  

	 (32)

YE3: 	

	
	 (33)

	 SRK4 is used to simulate the strong solution of SLM 
since it has higher order of convergence and superior in 
stability comparing with other schemes. The results of (31), 
(32) and (33) are presented in Figure 4. The prediction 
quality of the models can be assessed by using root mean 
square error (RMSE)

	 	 (34)

where yi is the experimental data and xi is the predicted 
solution. The obtained RMSE for YE1, YE2 and YE3 are 
shown in Table 1. 
	I t can be seen that numerical solution of SLM described 
more precise the experimental data, presenting low 
values of RMSE for YE1, YE2 and YE3. The dynamics of 
C. acetobutylicum P262 differ when SLM is used. As time 
evolves, the system is subjected to an intrinsic variability 
of the competing within species and deviations from 
exponential growth arise. It happens as a result of the 
nutrient level and toxin concentration achieves a value 
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Figure 3. Analytical solution and numerical solution of (29) using three different methods
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Figure 4. Results for LM, Experimental Data and SLM of (31), (32) and (33) 
for YE1, YE2, and YE3
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Table 1. RMSE for YE1, YE2 and YE3

        Model
RMSE

YE1 
n = 500

YE2 
n = 500

YE3 
n = 500

Stochastic logistic 
model (SLM) 

0.4820 0.0771 0.4421

Logistic model (LM) 0.5483 0.1058 0.5420
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which can no longer support the maximum growth rate. 
So, the stochastic fluctuations mainly affect the logistic 
growth of C. acetobutylicum P262 and we can conclude 
that cell growth in fermentation process can be modelled 
by using SLM. 

CONCLUSION

Stochastic logistic model may represent idealistic situations 
to describe the behaviour of cell growth proliferations in C. 
acetobutylicum P262. The dynamics of C. acetobutylicum 
P262 differ when the stochastic logistic model is used. 
Furthermore, we can conclude that 4-stage SRK shows 
better performance compared to 2-stage SRK and Euler-
Maruyama methods.
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